

产品特点

- 輸入电压范围: 176 264VAC/250 373VDC
- 工作温度范围: -30℃ to +70℃
- 高效率、高可靠性和高寿命
- 输出短路、过流、过压保护
- 满足 3000VAC 隔离耐压
- 符合 IEC/EN/UL62368/EN60335/GB4943 认证标准
- EMI 性能满足 CISPR32/EN55032 CLASS B
- 满足 5000m 海拔应用
- 低纹波噪声
- 105℃高温长寿命电容

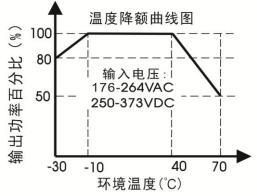
LM150-12D0512-40 定制首次开发项目是我司为共享充电宝系统定制的双路输出产品,可以在-30℃ to 70℃的环境温度下工作,该产品 EMC 性能满足 IEC61000 标准要求,EMI 裸机满足 CISPR32/EN55032 CIASS B 标准,为设备的电磁兼容提供保障,该产品还满足 IEC62368/EN62368/UL62368/GB4943 安全规范,集成多种保护功能,具有超高的性价比,是共享充电宝领域的最佳电源选择。

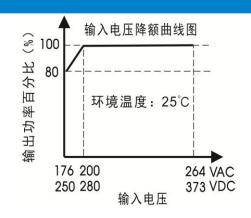
选型表									
认证	I 🗆	额定输出功率	额定输出电压及电流		工作电流范围		☆☆/0/ \Tvs	最大容性负载(µF)	
	型 号		(Vo/lo1)	(Vo/lo2)	lo1	lo2	效率(%)Typ.	lo1	lo2
-	LM150-12D0512-40	150W	+5V/20A	+12V/4.17A	0.1-20A	0.05-4.17A	80	6000	2000

输入特性								
项目	工作条件	工作条件			Тур.	Max.	单位	
** \ * \	交流输入			176		264	VAC	
输入电压范围	直流输入			250		373	VDC	
输入电压频率			47	-	63	Hz		
输入电流	输入电流 230VAC		-	-	2.5	^		
冲击电流	230VAC 冷启动			60		Α		
热插拔	热插拔			不远	を持			

输出特性							
项目	工作条件		Min.	Тур.	Max.	单位	
松山中区特色	全负载范围	主路 Vo1	-	±2		%	
输出电压精度		辅路 Vo2		±10.0			
线性调节率	满载	主路 Vo1		±1.0		%	
《注 归 7平	/内年以	辅路 Vo2		±1.0			
负载调节率	两路输出 10%-100% (平衡负载)	主路 Vo1	-	±2.0		%	
		辅路 Vo2	-	±10.0		76	
输出纹波噪声*	20MHz 带宽(峰-峰值)	主路 Vo1		80		mV	
制山纹灰除户		辅路 Vo2		120			
温度漂移系数	主路 Vo1		_	±0.03		%/℃	
开机延迟时间	额定输入电压		-		600	ms	
输出电压上升时间	230VAC				30	ma	
掉电保持时间	230VAC		20			ms	
最小负载		参考工作电流范围					
短路保护	短路状态消失后,恢复时间小于 3s			打嗝式,可长期短路,自恢复			

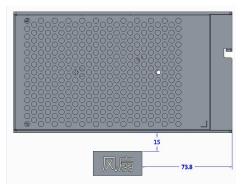
AC/DC 150W 机壳开关电源 LM150-12D0512-40

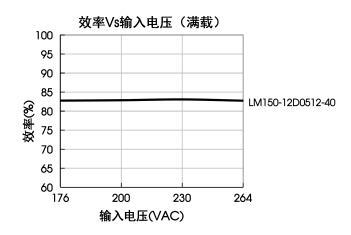

过流保护	两路输出同等比例负载	110%≤lo, 自恢复			
过压保护 (Vol)		Vo1≤6.75VDC,保护方式:锁死			
注: 1.*纹波和噪声的测试方法采用靠测法,具体操作方法参见《机壳开关电源应用指南》; 2.*在可调范围内工作时,输出功率请参照降额特性图,并且不能超额定输出功率。					

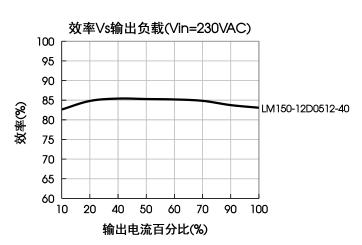

通用特性								
项目		工作条件		Min.	Тур.	Max.	单位	
	输入 - 输出							
隔离电压	输入 - 🖶	测试时间 1 分钟,派	测试时间 1 分钟,漏电流 < 10mA			-	VAC	
	输出 - 🖶			500		-		
	输入 - 输出			100		-		
绝缘电阻	输入 - 🖶	测试电压: 500VDC		100			M Ω	
	输出 - 🖶			100				
接触漏电流	'	240VAC 输入	240VAC 输入			0.75	mA	
工作温度		参考降额特性曲线		-30		+70	°C	
存储温度				-40		+85		
存储湿度		无结露环境		-		95	%RH	
			176VAC - 200VAC	0.833		_	%/VAC %/VDC	
		松)由口板架	200VAC - 264VAC	0		-		
		输入电压降额	250VDC - 280VDC	0.833				
输出功率降额	į		280VDC - 373VDC	0				
			-30°C to -10°C	1		-	%/ ℃	
		工作温度降额	-10℃ to +40℃	0		_		
			+40℃ to +70℃	1.667				
安全标准				符合 IEC/EN/U	L62368/EN60	335/GB4943	1	
安全等级				CLASSI				
平均无故障时间		MIL-HDBK-217F@25	MIL-HDBK-217F@25℃		>300,000 h			

物理特性	
外壳材料	金属 (AL1100, SGCC)
封装尺寸	179.00 x 99.00 x 30.00 mm
重量	525g (Typ.)
冷却方式	强制风冷

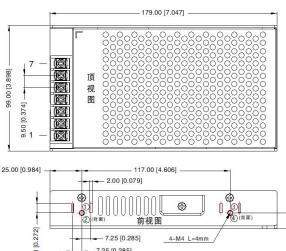
EMC 特性					
EMI	传导骚扰	CISPR32/EN55032	CLASS B		
CIVII	辐射骚扰	CISPR32/EN55032	32 CLASS B		
	静电放电	IEC/EN61000-4-2	Contact ±6KV/Air ±8KV	Perf. Criteria A	
	辐射抗扰度	IEC/EN61000-4-3	10V/m	perf. Criteria A	
EMS	脉冲群抗扰度	IEC/EN61000-4-4	±2KV	perf. Criteria A	
EIVIO	浪涌抗扰度	IEC/EN61000-4-5	line to line ± 1 KV/line to ground ± 2 KV	perf. Criteria A	
	传导骚扰抗扰度	IEC/EN61000-4-6	10 Vr.m.s	perf. Criteria A	
	电压暂降、跌落和短时中断抗扰度	IEC/EN61000-4-11	0%, 70%	perf. Criteria B	

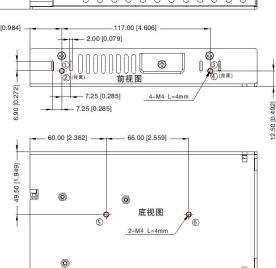

产品特性曲线




- 注: ①对于输入电压为 176 200VAC/250 280VDC 需在温度降额的基础上进行输入电压降额;
 - ②本产品适用在强制风冷条件下,推荐风扇(40*40*20mm),12V供电,风量 6.27CFM,风压 2.79mmH2O,

风扇与电源本体的位置参考如下图示(单位 mm):


产品如使用在自然风冷条件下,请咨询我司 FAE.



外观尺寸、建议印刷版图

安装位置	螺丝规格	L(max)	扭力(max)
1-6	M4	4mm	0.9N · m

客户系统

电源外壳

固定螺丝

注:

尺寸单位: mm[inch] 接线线径: 22-12AWG

连接器扭力大小: M3.5, 0.8N·m 未标注之公差: ±1.00[±0.039] ①-⑥ 任意一个位置必须要接PE

注:

- 1. 包装信息请参见《产品出货包装信息》,包装包编号:58220068;
- 2. 除特殊说明外,本手册所有指标都在 Ta=25℃,湿度<75%RH,额定输入电压和额定输出负载时测得;
- 3. 当工作于海拔 2000 米以上时, 温度降额 5℃/1000 米;
- 4. 本手册所有指标的测试方法均依据本公司企业标准;
- 5. 为提高转换效率,当模块高压工作时,可能会有一定的音频噪音,但不影响产品性能和可靠性;
- 6. 我司可提供产品定制,具体需求可直接联系我司技术人员;
- 7. 产品涉及法律法规:见"产品特点"、"EMC 特性";
- 8. 我司产品报废后需按照 ISO14001 及相关环境法律法规分类存放,并交由有资质的单位处理。

广州金升阳科技有限公司

地址: 广东省广州市黄埔区科学城科学大道科汇发展中心科汇一街 5 号 电话: 86-20-38601850 传真: 86-20-38601272

MORNSUN®

E-mail:sales@mornsun.cn M金升田科技有限公司